Image Generation Using an Autoencoder
Math 156 Group Project

Amaael Antonini, Krystian Galik, Salman Shah, and Zixin Zhang
June 13, 2018

1 Introduction

Ever since their invention, neural networks have been widely used to solve many kinds of problems.
An autoencoder is a specific type of neural networks that is designed to encode a given class of
information into a significantly lower dimensional space and decode the vectors in that space to
reproduce the original image. In this project, we investigate how well an autoencoder can encode
graphical information and discover the optimal architecture for our problem through experimenta-
tion. Then we further our investigation by asking the following question: ” Given a dataset of images
of different categories, can we build a machine learning model that can be trained to generate new
images pertaining to a certain category?”

2 Model

2.1 Dataset

We use the MNIST dataset because it is the perfect dataset for our problem. This is a dataset with
60,000 labeled 28x28 pixel images of handwritten integers from 0 to 9. These images are grayscale,
allowing us to represent each pixel as its intensity value from 0 to 1, and to represent each image
as a vector with 784 entries containing all the intensity values.

2.2 Approach

In order to determine the best model for our problem, we sequentially narrow our choices by a
number of variables. First, we determine the architecture of the autoencoder by experimenting
with the number of hidden layers. Next, we experiment with loss functions to determine the loss
function that produces the least value for validation loss. Finally, we experiment with probability
distributions that allow us to generate new examples of images with the maximum amount of
variance while maintaining good accuracy.

2.3 Architecture
2.3.1 Dimension of the Layers

The input layer of the autoencoder must have 784 nodes since that is the size of our input vectors.
The output layer must also have 784 nodes. This is because we measure the performance accuracy
by simply comparing the output image to the input image.

The complexity of an autoencoder is determined by its number of hidden layers. We define the
encoding dimension to be 32 (ie: the network reduces the dimensionality of the image and stores it
in a 32 dimensional vector). We built three different variations of our autoencoder: the first with
a single hidden layer, the second with 5 hidden layers, and the third with 9 hidden layers. The
number of nodes in each layer is given respectively below:

e 1 hidden layer: 32
e 5 hidden layers: 512, 128, 32, 128, 512
e 9 hidden layers: 512, 256, 128, 64, 32, 64, 128, 256, 512

Notice that the encoder portion of the network steadily decrements the number of nodes towards
the encoding dimension while the decoder portion of the network steadily increments the number
of nodes back to the dimension of our input image. This choice of reduced dimensionality for the
encoder takes into account the following two considerations: first, using a consistently dimension-
reducing encoder forces the neural network to avoid learning the identity function at any stage of
training; second, the autoencoder can reduce the input data to a lower-dimensional space where
implementing a probability distribution is computationally more feasible. The symmetric structure
is implemented for convenience.

2.3.2 Number of Training Epochs and Number of Layers

After testing with three different architectures, we discovered that in the range of 100 epochs, the
5 layer network had the best performance. However, we noticed that the 9 layer network continued
to improve when we continued training the networks for higher number of epochs, whereas the 5
layer and the 1 layer networks stopped showing improvements. For this reason, we chose the 9 layer
network and trained it for 1000 epochs to use for our model. See Figure.l and Figure.2 for the
resulting outputs.

2.3.3 Loss Function

We experimented with 3 different loss functions: (1) mean squared error, (2) binary cross entropy,
and (3) Euclidean distance loss. Recall that these loss functions are given by:

d
B (X) = 3 S (F(X); - X0)? (1)
i=1
d
Ey(X) =— ZXi log(F(X);) — (1 — X;)log(1 — F(X);) (2)
By(X) = | F(X) - X Q

zlzl7lolalrlalals]?
zlzl/loldlrlvlalals
zizl/joldalrlvlalel?
71zl /jolul/lvl2]<]7

Figure 1: Autoencoder results after 100 epochs. Original (1st row), 9 layer (2nd row), 5 layer (3rd
row), 1 layer (last row)

MEAECNENGR
zlz]l/joldl/l4]als]7

Figure 2: Autoencoder results for 9 layer network after 1000 epochs. Input (top), output (bottom)

where X € R? is the input, F is the autoencoder, and d = 784 is the input dimension

Through experimentation, we discovered that out of these three loss functions, binary cross
entropy produced the least error values over hundreds of epochs, and hence, we chose this loss
function for optimizing our model.

2.4 Data Generation

To implement the data generating portion of our model, we decided to fit the encoded space
of the autoencoder with a probability distribution for each category. More specifically, for each
x € {0,1,...,9}, the model includes a probability distribution P, in the 32-dimensional encoded
space and samples a point from that distribution. Then, the sampled point is decoded with the
decoder trained in section 2.3.

The fundamental assumption is that digits that are visually similar are encoded close together
in the encoded space. Making this assumption is convenient because it allows us to use Gaussian
distributions to sample points from the encoded space. At this stage, we have the option of using
a single Gaussian or a mixture of Gaussians for each digit. We investigate both results in the next
section.

2.4.1 Single Gaussian Implementation

Our first attempt at sampling points from the encoded space involves using standard Gaussian
distributions. For each z € {0,1,...,9}, we define a Gaussian distribution N (p.,%,) based on

all the encoded data points labeled x in the encoded space, using the sample mean as pu, and the
sample covariance matrix as X,.

Given that our assumption is correct, we expect that this will capture part of the region in the
encoded space that represents the digit . Moreover, due to the fact that the shape of that region
may be arbitrary, we scale down the covariance matrix to maintain a high likelihood of choosing a
sample closer to the mean.

2.4.2 Gaussian Mixture Implementation

However, restricting our sample to a region close to the sample mean is likely to produce images that
are very similar to the mean. Furthermore, it is possible that the shape of each region representing
a digit could be quite complex and uncapturable by a single Gaussian. To bypass these issues, we
implement a mixture of Gaussians which is based on the following equation:

K
P(z) = ZﬁN(@"UM, %) (4)

where K represents the total number of Gaussians used to fit the data, 7; represents the probability
of sampling from the i'h Gaussian, y; represents the mean of the i*h Gaussian and ¥; represents
the covariance matrix of the i*h Gaussian.

The GaussianMixture function from sklearn.mixture is used to implement the mixture and the
initial conditions are generated through the k-means method.

3 Results

Through experimentation, we discovered that a deeper network generally took longer to train but
had better overall performance. The results from decoding newly sampled points from the encoded
space verify that our initial fundamental assumption is correct: images of the same digit are indeed
stored closer together in the encoded space.

3.1 Results of Single Gaussian Model

The results of the single Gaussian model with scaled-down covariance matrices are shown in the
left picture in Figure 3. For each digit, 10 decoded samples are generated. As shown in the figure,
the single Gaussian model did not generate a great deal of variations.

The single Gaussian model with full covariance matrices was also tested and the generated
results include many inrecognizable digits, which may be due to that there are overlaps among
digits with similar features, such as 3 and 8.

3.2 Results of Gaussian Mixtures Model

In order to obtain more variations and capture the regions of the encoded space more accurately,
we proceeded to use a mixture of Gaussians. We picked K = 250 in Equation 4. The results are
shown in the right picture of Figure 3.

As we expected, the Gaussian mixture models produced far more variety in terms of handwriting
styles than the single Gaussian model, but the distribution occasionally sampled points from regions

ololojolojo]ololo]o
nnnonnnnonn
2122121212122]2]12
HEHEBEEHEEH
dlalq4l 41441414
sslsislsssys]s]s)
elejojolejolelclo]e
z171717171717171717)
HEHHEHEHEBEHE
9]12191919]9191919]19

LI
N\

2lololelololo]ololo
npuannnnon
RERERENEEE
HSEIEHEEEHEHEA
alalalalulogdlulalyg)
HEHEGSHESEHEGE
olejolelojelcle]le]o)
ZiHl7 717219121219
HHOEBHOHBEEA
214141719]al9]l4al9]7)

Figure 3: Results from Single Gaussian Model (left) and Gaussian Mixtures Model (right)

ol]2]3|v]s|él7]<|q
olt|2|>1¥]s16]7]2]q
ol 2131451617121

Figure 4: Comparisons for Gaussian mixture generated digits. Generated digit (1st row), Best
matching reconstructed image (2nd row), Original image (3rd row)

that were outside the region for the digit we desired. We further expected that increasing the
value of K would give us progressively more accurate models in terms of describing the actual
distribution of data. We observed that this was not necessarily the case, although for K = 1, the
model consistently produced poor results.

Furthermore, in order to determine the degree of overfitting, comparisons among the generated
digits, the corresponding best matching reconstructed digits of the autoencoder and the correspond-
ing original digits are performed and shown in Figure 4. The method used to determine the best
matching reconstructed digits is the binary cross-entropy. We can see that the generated digits
are distinguishable from the best matching reconstructed digits and the original digits in Figure 4,
which illustrates the originality of the generated digits by the Gaussian mixture method.

HOEECAAERGEOHRPARENOABEAREEAEAEE

Figure 5: Standard basis vectors of the 32-dimensional encoded space

nnnnnnnnnnnnnnnnnnannnnnnnrririd

Figure 6: Convex Combination of Sample Means for 1 and 7.

3.3 Interesting Observations
3.3.1 Standard Basis Vectors

Decoded versions of the standard basis vectors are shown in Figure.5. Notice that most of the
vectors are vaguely recognizable (by humans) as poorly handwritten numbers. This indicates that
the network is not encoding the input information by recognizing patterns (such as loops or edges),
but simply by clustering them in space.

3.3.2 Convex Combinations of Sample Means

To observe and analyze the spaces between the labeled clusters in the encoded space, we imple-
mented pairwise convex combinations of sample means of every digit. The resulting image warps
from one digit to another in a non-randomized fashion. Figure.6 shows the evolution between digit
1 and 7, which demonstrates that the decoder performs non-linear operations which capture more
features than simple linear combinations.

3.3.3 Principal Component Analysis (PCA)

In our last attempt to visualize the encoded space, we projected the space into its first two principal
components. The left picture in Figure. 7 shows a plot of the eigenvalues of the sample covariance
matrix in the encoded space. Notice that the eigenvalues decrease steadily (i.e. there is no sudden
drop off for the values), implying that much of the data is using the available 32 dimensions. There-
fore, projecting the data onto two dimensions may greatly misrepresent its actual representation

Eigenvalues of Encoded Sample Covariance Matrix

Figure 7: PCA: eigenvalues (left), projection of 1 and 0 (center), projection of 4 and 9 (right)

and exclusivity from other clusters. Nevertheless, comparing the middle plot and and the rightmost
plot in Figure. 7, we can see that digits with very different features, such as 0 and 1, are already
separated clearly in the projected subspace, while digits with similar features, such as 4 and 9, have
many overlaps in the projected subspace.

4 Conclusion

In this project, we trained an autoencoder to encode and decode handwritten digits using the
MNIST dataset. We also created models for generating digits from the encoded space. A slightly
different (and perhaps better) approach would have been to create a variational autoencoder to
sample digits. Other potential improvements include implementing sparsity or using disentangled
representation. Although we took a fairly simple approach to sampling images, we still obtained
good results.

5 References

e Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer, 2013.
e Goodfellow, Ian, et al. Deep Learning. MIT Press, 2017.

e Chollet, Francois. Building Autoencoders in Keras. The Keras Blog, MkDocs, 14 May 2016,
blog.keras.io/building-autoencoders-in-keras.html.

